Hardy Spaces Associated with Non-negative Self-adjoint Operators
نویسندگان
چکیده
Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.
منابع مشابه
Hardy Spaces Associated with Non - Negative Self - Adjoint Operators IMI
Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملCompactly Supported Frames for Spaces of Distributions Associated with Non-negative Self-adjoint Operators
A small perturbation method is developed and deployed to the construction of frames with compactly supported elements of small shrinking supports for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows, in particular, to dev...
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کامل